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ABSTRACT

This paper investigates the problem of finite-time stability for discrete-time neural
networks with sector-bounded neuron activation functions and interval-like time-
varying delay. The extended reciprocally convex approach is used to establish a
delay-dependent sufficient condition to ensure finite-time stability for this class of
systems. A numerical example to illustrate the effectiveness of the proposed

criterion is also included.
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1. INTRODUCTION

In recent decades, neural networks (NNs) with delays have received
considerable attention in analysis and synthesis because their wide applications have
been realized in various fields, such as image processing, signal processing, pattern
recognition, association memory, etc. [1].

The study of dynamic properties of systems over a finite interval of time comes
from many reality systems, such as biochemical reaction systems, communication
network systems, etc. [2]. For the class of discrete-time NNs, there have been some
papers dealing with finite-time stability and boundedness [3, 4]. On the other hand, from
[5], we know that nonlinear functions satisfying the sector-bounded condition are more
general than the usual class of Lipschitz functions. However, up to this point, only a few
authors have investigated general NNs with activation functions satisfying the sector-
bounded condition [6, 7]. That motivated our current study. More specifically, in this
paper, we suggest conditions that guarantee the finite-time stability of discrete-time
delay NNs with sector-bounded neuron activation functions.

The outline of the paper is as follows. Section 2 presents the definition of finite-
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time stability and some technical propositions necessary for the proof of the main result.
A delay-dependent criterion in the form of matrix inequalities for finite-time stability
and an illustrative example is presented in Section 3. The paper ends with conclusions
and cited references.

Notation: Z, denotes the set of all non-negative integers; R™ denotes the n-
dimensional space with the scalar product xTy; R™" denotes the space of (n x
r) —dimension matrices; AT denotes the transpose of matrix A; A is positive definite
(A>0) if xTAx >0 for all x#0; A>B means A—B > 0. The notation diag{...}
stands for a block-diagonal matrix. The symmetric term in a matrix is denoted by *.

2. PRELIMINARIES

Consider the following discrete-time neural networks with time-varying delays

{x(k +1) = Ax(k) + WF(x(k)) + Wyg(x(k — h(k))), k € Z,, .
x(k) = o(k), k € {—hy,—h, +1,...,0}, (1)

where x(k) € R" is the state vector; n is the number of neurons; the diagonal matrix A
represents the self-feedback terms; the matrices W, W; € R™" are connection weight
matrices. f(x(k)) and g(x(k — h(k))) are the neuron activation functions. The time-
varying delay function h(k) satisfies the condition

0<h; <h(k)<h, VkeL,, (2)
where hy, h, are given positive integers; ¢(k) is the initial function.

In this paper, we use the following assumption for the neuron activation
functions.

Assumption 2.1. [6] The neuron state-based nonlinear functions
fx() = [fiGa(®)  foe2(k) . fuCen D],
gx(k = h(k))) = [g1 Cer(k — h(K))) g2 (xa(k —h(K))) . Gn(Crn(k —h()N]T

are continuous and satisfy f;(0) =0,g;(0) =0 for i = 1,...,n and the following sector-
bounded conditions

[fC) = fO) = Ux =T [f) = fO) = U (x =] <0,
[9(x) =g —Vilx =] [gC) —g») = Valx = )] <0, 3)
where Uy, U,,V; and V;, are real matrices of appropriate dimensions.

Remark 2.1. Observe that, when U; = —-U, =U and V; = -V, =V, condition (3)
becomes

[fC) = FOITLf () = FON] < [x = y]TUTU[x = y],
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[9() = g9 () — g < [x = y]TVTV[x — 1.
This implies that the standard Lipschitz conditions || f(x) — f(y) I< Il U(x —y) Il and

Il g(x) —g) I<IV(x—y) |l will be satistfied. Therefore, under Assumption 2.1, the
neural network model (1) is more general than those considered in [1, 4].

Definition 2.1. (Finite-time stability) Given positive constants c;,c,, N with ¢; < ¢, N €
Z, and a symmetric positive-definite matrix R, the system (1) is said to be finite-time
stable w.r.t. (cq,c5, R, N) if

T T
ke{_hzr‘rlﬁzcﬂmo}(p (KHRp(k) < ¢y = x (HRx(k)<c, Vke{l2 .. N}

What follows are some technical propositions that will be used to prove the main
result.

Proposition 2.1. (Discrete Jensen Inequality [8]). For any matrix M € R™", M = M T>o,
positive integers ry,1, satisfying 1y < 1, a vector function w: {ry,r; +1,...,1,} = R", then

(52, 0®) (L2, 00) < o—n+DIR, oTOMQ).

Proposition 2.2. (Extended Reciprocally Convex Matrix Inequality [9]). Let R € R™"
be a symmetric positive-definite matrix. Then the following matrix inequality

1
0 g [R+(1—a)T1 s
. 1 > x R +aT,|’
l-a
holds for some matrix S € R™" and for all a € (0,1), where T, = R —SR™ST, T, =R —
STR™1S.

Proposition 2.3. (Schur Complement Lemma [10]). Given constant matrices X,Y,Z with
appropriate dimensions satisfying X = XT,Y =YT > 0. Then

X ZT

X+7Zv"1z7<0 o [ ]<0.
7 =Y

3. MAIN RESULT

Let hy, = hy, —hy, y(k) =x(k+1) —x(k) and let v be some positive real
constant such that the following estimate

T
ke{—hz,r—nhi)-(m,...,—1}y (R)y(k) <7

holds. We define the following matrices to facilitate the presentation of the main result.
= 1 = 1
Uy =3 (UfU, + U3 Uy), Uy = =5 (U +U7),
= _ 1 = 1
Vi=- (Ve + Vi), Vo= =2 (v +V7),
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Qll = _5(1) + 51) + (hlz + 1)Q + R1 _ﬁll le = 651, le = _Uz,
Q7 = AP, Q18 = h2(A—DS;, Q° = h2,(A—1D)S,,
O = 8" (=R, + R, — 265;) — 83, Op2 = 8" (—Ry + R, — 6S;) — 654,

073 = §M*1(25, - 8), Q72 = MTI(S, — 5), Q¥ = sMitls, apl0 = —ghtls,

033 = —gMQ — §M*1(3S, -5 —ST) = V;, 3t = sM*(S, - 9),

Q3 = §M*1(25, = 5), Q% = =V, Q1% = gMtls, Qp0 = —gMmrisT,
O}t = —6M2R, — s™M*1S,, OfF = —6M2R, — 26M*1LS,, )0 = sMtisT,
035 =0% =], 03 =WTP, 058 = hfWTs;, Q5% = hZ,WTS,,
Q%7 = W'P, Q%8 = hZW'S,, Q° = hi,W/'s,,

Q77 = —P, 088 = —h25,, Q% = —h%,S,, Q1010 = _ghitig

p1= %01(h1 + h)(hyz + 1)V, py = %Thfz(lh +hy + 1)V,
A = =80y, A2 = ¢ 6N A,, AR = pidy, A = by VT,
A5 = c1hyp6N*h2 g, A6 = ZTh?(hy + 1)6V Mg, AY = p, s,

A22 = _615N+1/12’ A33 = —p12s, A4 = —Clh16N+h1/14,

N%® = =1 hy0M A5, A% = = Zthi (hy + 1OV MAg A7 = —pad,

AY =0 for any other i,j: j > i, AY = (Aji)T,i > J.

Theorem 3.1. Given positive constants cq,c,, v, N with ¢; < ¢y, N € Zy and a symmetric
positive-definite matrix R. System (1) is finite-time stable w.r.t. (c1,c5, R, N) if there exist
symmetric positive definite matrices P,Q,Rq1,R;,51,5, € R™™, a matrix S € R™"™ and

positive scalars 4;, i = 1,7, 8 > 1, such that the following matrix inequalities hold:

MR <P <2,R, Q<2A3R, Ry <A4R, Ry <AsR, S; < Agl, Sy < A1,

-Qll 912 0 0 QlS 0 Ql7 918 Ql9 0
+ 032 03 e* o 0o o0 o0 o0 oFf
+ o+ 0¥ 03 0 0* o o0 0o of
* * * Qﬁ‘f 0 0 0 0 0 0
'Qh % % % % QSS 0 QS7 QSB Q59 0
* * % * % Q66 967 Q68 969 0
* * * * * * Q77 0 0 0
* * * * * * * (88 0 0
* * * * * * * * 09%° 0
* * * * * * * * * Q10.10]

(4)

<0, (5
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-Qll 912 0 0 QlS 0 Ql7 918 Ql9 0
+ 02 032 0* 0 0 0 0 0 0
o« 0¥ 03 0 0% o 0o 0o o°

2 2
* * * _Q;*l‘} 0 0 0 0 0 Q;Ll,lo

2 2
Qp, = « 055 0 057 058 (59 o |<0o (6)

* * *
* * % * % Q66 967 Q68 969 0
* * * * * * Q77 0 0 0
* * * * * * * (88 0 0
* * * * * * * * 0% 0
* * * * * * * * * 910,10_
A =[AU]7x7 <O. )

Proof. Consider the following Lyapunov—Krasovskii functional:
4
Vi) = ik,
i=1

where
Vi (k) = xT(k)Px(k),
Va(k) = $0000 ) TG s 85 178T(0)Qx(0),
Va(k) = BTk, 8571752 T()R1x(s) + Tyt 8%7175xT($)Rpx(s),

Va(k) = X9-_p, 41 Dtr—14s M8y T(©)S1y(0) +
-h - —1—
+Xs=lh, 41 Yt Tk-14s P28 YT (O S2(0),

By denoting n(k):= [x"(k) fT(x(k)) g"(x(k—h(ODIT, I:=[4 W W], wehave
the following estimates for the difference variation of V;(k),i =1, ...,4:

Vi(k + 1) — 8Vy(k) = n" (k)T TPy (k) — 6xT (k)Px(k), (8)
Va(k +1) = 8V5(k) < (hip + DT (W) Qx (k) — 8™MxT (k — h(k)Qx(k — h(K)),  (9)
Vs(k + 1) — 8V3(k) = xT(k)Ryx(k) + x"(k — hy)[6"(—=Ry + Ry)]x(k — hy)

— 8M2xT(k — hy)Ryx(k — hy), (10)
Va(k +1) = 8V4(k) < yT()[h3S; + 13,51y (k) — ha 8 B4k, ¥ (9)S1y(s)
— hyp MR T YT (9)S,y(S). (11)

By Proposition 2.1,
—hi 8 B2k n, YT ()S1y(5) < =8[x (k) — x(k — h)]"Si [x(k) —x(k — k)], (12)

_ hi+1vk—1-hy T _chq+1f(___ 1 T I T
hq,6™ Zs:k—hz Yy (5)Sy(s) < —6™ ((h(k)_hl)/hlz 615261+(h2_h(k))/h12525252)

1 1
= —§m*t (; 18281 + Tz gsz(z)
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TI=S, 0
| N ]

where ¢; = x(k — hy) — x(k — h(k)), ¢, = x(k — h(k)) — x(k — h,) and a =

h{k)-h,
hlZ )

Proposition 2.2 gives us

L TS, +(1—a)T S ¢
B, ghatiyk-1-hy T < —§hit1 [51] [ 2 1 ” 1]
12 Ys—tk—n, ¥ (8)S2¥(s) < 4 T s, +aT,) 1%

= —§MHET(S, + (1 — )T + ST + 75T,
+3 (82 +aTy){), (13)

where T, =S, — SS;1ST and T, = S, — STS;1S.

Substitute (12), (13) into (11) and combine with (8)-(10), we obtain

V(ik+1)—48V(k)

< nT(ITPry(k) + xT(k)[—6P + (hyy + 1)Q + Ry — 85, ]x(k)

+ xT(k)[26S,1x(k — hy)

+xT(k — h)[6"(—Ry + Ry) — 65, — 6™M*1(S, + (1 — @) Ty)]x(k — hy)

+ xT(k — h)[26™M11(S, + (1 — )Ty — S)]x(k — h(k))

+ xT(k — hy)[26™M*1S]x(k — hy)

+xT(k — h(k))[-6"Q — 6M*1(2S, + (1 — )Ty + aT, — S — ST)]x(k — h(k))

+xT(k — h(k))[26™*1(S, + aT, — S)]x(k — hy)

+ xT(k — hy)[-8™R, — §M*L(S, + aT,)]x(k — hy)

+yT(k)[hESy + hi; S,y (k). (14)
Besides, from (3), it is not hard to see that

0 < fTx(RN[-11f (x(k)) + xT (k) [-2Ua]f (x(k)) + XT(k)[—?l]X(k),
0 < g (x(k — h(ON[-11g Ce(k — h(k))) + xT (k — h(k))[-2V,]g(x(k — h(k))) ~ (15)
+xT(k = h(k)[=V1]x(k — h(k)).

Furthermore, by setting
§00 =Ty xT(k—hy) xT(k—h(k) xT(k—hy) frx(k) g ek —h()N]"
PA 0 0 O PW PW;

h2,S,(A—=1) 0 0 0 h%,S,W h%,S,W,

we can rewrite



TAP CHI KHOA HOC VA CONG NGHE, Truong Dai hoc Khoa hoc, PH Hué
Tap 23, S5 1 (2023)

P 0 o 1!
nT(R)ITPI(k) + yT (k) [RZS; + h3,S,]y(k) = ET(k)YT |0 hiSi 0 YS (k). (16)
0 0 h3S,
Consequently, combining (14), (15) and (16) gives
P 0 o 1
V(k+1) = 8V(k) < ET(k) [ P +YT|0 his; 0 £(k), (17)
0 0 hi4sS,
where
E N 0 Q% 0]
* cble%k) th(k) QZ4 0 O
* * o332 o3t 0 Q3
Ppiy: = h(k) h(k) ’
* * * q)h(k) 0 0
* * * * ,Q55 0
* * * 066
with
ity = 8M[—Ry + Rp] — 6S; — §M*[S, + (1 — a)Ty],
q)h(k) 6h1+1[52 + (1 - a)Tl - S],
ity = —6MQ — 6MT2S, + (1 — )Ty +aT, —S - ST -V,

h(k = §M*1[S, + aT, - 5],

ity =

—8"2R, — §M*L[S, + aT,].

Next, by using Proposition 2.3, it can be deduced that

-1

0 Y<0 & qjh(k) <0,

P 0 0
th(k) + YT 0 h%sl
0 0 h%,S,
where
-Qll QlZ O 0
* Rl Phy 0%
o PRy Py
* * * q)h(k)
* * * *
* * * *
* * * *
* * * *

Qs o
0 0
0 Q36
0 0

Qs 0
% Q66
* *
* *
* *

957
967
.Q,77

ES

958
968
0
QS8

ES

999_

It follows from convex combination technique that Wy, <0 if the following two

inequalities

lphl <0 and Lphz <0
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hold. By Proposition 2.3 again, the above two inequalities hold if the inequalities stated
in (5) and (6) hold. This, together with (17), shows that

Vik+1)—6V(k) <0 Vk€EZ,.
By iteration, it infers that
V(k) < 8%V (0) <MV (0) Vk=1.2,..,N. (18)

From assumption (4) and x(k) = ¢(k) Vk € {—h,,—h; + 1, ...,0}, we have the following
estimate

—1 ha(hy+1)—hy(h,—1)
2

V(0) <[, + 256" + L48M7 Ry + 256" (hy — hy)| ey

+ 87171y PO 4 4, sha 22 < g (19)
From (18) and (19), we get
V(k) < éNo. (20)
On the other hand, from (4) it follows that
V(k) > xT(k)Px(k) > 1;xT(k)Rx(k) Vk € Z,. (21)

Note that by Proposition 2.3, the inequality (7) is equivalent to
—C64; + 18N, + pids + ¢ h VTN, + ¢ hy 8N R2 A
+27h? (hy + 1)V A + p2; <0,
or
—c, 64, + 6Nt < 0. (22)
Accordingly, from (20)-(22), we find that:

xT()Rx(k) < 5= [6"*10] < Vk=12,..,N.
1

This implies that system (1) is finite-time stable with respect to (cy, c3, R, N). m

Remark 3.1. Conditions (4)-(7) are in the form of matrix inequalities and (5)-(7) will
become linear matrix inequalities (LMIs) when we fix the parameter § and thus they
can be tested for feasibility easily with MATLAB software.

Remark 3.2. In [4] we used reciprocally convex combination technique and in this work
we applied an extension of that technique. To see that the criteria proposed in Theorem
3.1 are better than those given in [4], let’s consider the following example.

Example 3.1. Consider the system (1), where

09 0 _ [—0.025 0.025 _ 1005 0.025
0 0.7]’ W_[ 0.02 0.035]’ Wl_[—o.os 0.025/)

Ul = 0.512, UZ = 0.9]2, V1 = 0.112, VZ = 0.5]2,
8
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1.25 0.25
0.25 1.35

Since U; = 0.451,, U, = —0.71, # 0, V; = 0.05I,, V, = —0.3, # 0 , ie., the
neuron activation functions in this case are sector-bounded, Corollary 3.1 of [4] is not

R=| |, nto =2+25sin2% k€ Z,.

applicable.
For given hy =2, h, =27, N=90, t=1, ¢; =1, and ¢, =9, the LMIs (4)-(7)
are feasible with § = 1.0001 and

_ [18.5370 7.0746] Q=[0'0690 0.0329 _ [0.1346 0.0779]
7.0746 23.77281° 0.0329 0.0622" "' 7 10.0779 0.4112F

_ 0.0612 0.0077] g =[0.2434 0.0072] g =[0.0071 —0.0000
2710.0077 0.0732)" “* 7 10.0072 0.2225 27 1-=0.0000 0.0069 J

_ [~0.0071 0.0001 B _ _
5_[0_0000 _0.0066], A, = 129389, A, =18.7143, 15 = 0.0648,

Ay = 04694, A5 =0.0674, A =0.2975, A, = 0.0072.

For this reason, by Theorem 3.1, the system is finite-time stable w.r.t. (1,9,R,90).

4. CONCLUSION

In this paper, we address the finite-time stability for a general class of discrete-
time neural networks subjected to interval-like time-varying delay and sector-bounded
neuron activation functions. By using an extended reciprocally convex matrix inequality,
we have achieved a refined delay-dependent sufficient condition that can be quickly
programmed and computed by the LMI Toolbox in MATLAB.
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VE MOT TIEU CHUAN ON DINH TRONG THOI GIAN HUU HAN CHO
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Bai bao nghién cttu tinh 6n dinh trong thoi gian hitu han cta 16p hé no-ron roi rac
v6i cac ham kich hoat no-ron bi chan kiéu hinh quat va do tré bién thién theo thoi
gian dang khoang. Cach tiép can 16i nghich dao mé rong dugc sit dung dé thiét lap
mot diéu kién du phu thude do tré nhdm dam bao tinh 6n dinh trong thoi gian htru
han ctuia 16p hé nay. Bai bao ciing chita mot vi du bf“mg s& nhdm minh hoa tinh hiéu

qua cta tiéu chuan da dé xuat.
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